Matematika

Pertanyaan

Tolong jawab soal tersebut !

Tolong jawab soal tersebut !

2 Jawaban

  • InTegraL
    • Luas

    y1 = 6 - x
    y2 = x²

    Batas IntegraL :
    y1 = y2
    x² + x - 6 = 0
    (x + 3)(x - 2) = 0
    x = -3 ; x = 2

    Luas
    = ∫(y1 - y2) dx [2_-3]
    = ∫(6 - x - x²) dx
    = 6x - 1/2 x² - 1/3 x³
    = 6(2 - (-3)) - 1/2 (2² - (-3)²) - 1/3 (2³ - (-3)³)
    = 30 + 5/2 - 35/3
    = 30 + (15 - 70)/6
    = 30 - 55/6
    = 30 - 9 1/6
    = 20 5/6 satuan luas
  • y = x² 
    y = 6-x
    -Cari limit integrasi dl
    y=y
    x²=6-x
    x²+x-6=0
    (x-2)(x+3)=0
    x=2 dan -3 
    - Selesaikan integralnya.
    [tex] \int\ {x^{2} - (6-x)} \, dx = \frac{1}{3} x^{3}-6x+ \frac{1}{2} x^{2} [/tex]
    -Masukkan limit, terus dikurangkan
    [tex][ \frac{1}{3}(2)^3 + \frac{1}{2} (2)^2 -6(2)] - [\frac{1}{3}(-3)^3 + \frac{1}{2} (-3)^2 -6(-3)] = \frac{-125}{6} [/tex]

    Tapi nilai utk luas ngk bs negatif jd anggap jawabannya positif aj, yaitu 125/6 atau [tex] 20\frac{5}{6} [/tex]